University of Wisconsin-Madison
 Math 340 - Fall 2010
 Linear Algebra

Final Exam
Exercise 1:
(1) Let $L_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map satisfying $\operatorname{dimKer} L_{1}=3$. Find L_{1}.
(2) Let $L_{2}: \mathbb{R}_{3}[X] \rightarrow \mathbb{R}_{2}[X]$ be a linear map satisfying $\operatorname{dimKer} L_{2}=1$. Find its image $\operatorname{Im} L_{2}$.
(3) Is there any linear map $L_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}[X]$ such that $\operatorname{Im} L_{3}=\mathbb{R}_{3}[X]$?

Exercise 2: Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $L((-1,1))=(1,-3)$ and $L((-1,3))=(0,1)$. Find $L((1,1)$.
Exercise 3: Prove or disprove that the following maps are linear.
(1) $L_{1}: \mathbb{R}_{4}[X] \rightarrow \mathbb{R}$ with $L_{1}(P)=0$.
(2) $L_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, satisfying $L((2,-1,1))=(1,0,1)$ and $L((-2,1,-1))=(0,1,4)$.
(3) $L_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with $L_{3}((x, y, z))=(x, x y, y+2 z)$.

Exercise 4: Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map defined by

$$
L\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{c}
y \\
0 \\
x+y
\end{array}\right)
$$

Let \mathcal{C} be the canonical basis and consider $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3} with,

$$
v_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

(1) Check that \mathcal{B} is a basis of \mathbb{R}^{3}.
(2) Find the matrix of L relative to the canonical basis $\mathcal{C},[L]_{\mathcal{C}}^{\mathcal{C}}$.
(3) Find the transition matrix, $[I]_{\mathcal{B}}^{\mathcal{C}}$, for changing from \mathcal{B} to \mathcal{C}.
(4) Find the transition matrix, $[I]_{\mathcal{C}}^{\mathcal{B}}$, for changing from \mathcal{C} to \mathcal{B}.
(5) Find the matrix of L relative to the basis $\mathcal{B},[L]_{\mathcal{B}}^{\mathcal{B}}$.

Exercise 5: Let $M_{2 \times 2}(\mathbb{R})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ; a, b, c, d \in \mathbb{R}\right\}$ the space of 2×2 matrices. Let L : $M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be the transformation defined by $L(A)=A^{t}$.
(1) Show that L is linear.
(2) Show that $\mathcal{C}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a basis of $M_{2 \times 2}(\mathbb{R})$.
(3) Find the matrix $[L]_{\mathcal{C}}^{\mathcal{C}}$ of L relative to \mathcal{C}.

Exercise 6: Consider the space $W=\operatorname{span}\left\{\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}}\end{array}\right)\right\}$.
(1) Show that $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}}\end{array}\right)$ is an orthonormal basis of W.
(2) ${\text { Compute } \operatorname{proj}_{W}}\left(\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right)$.

Exercise 7:

(1) Let $L_{1}: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}_{2}[X]$ be the linear map defined by $L(P)=P^{\prime}$.
(a) Compute $L_{1} \circ L_{1}\left(a+b X+c X^{2}\right)$.
(b) Compute $L_{1} \circ L_{1} \circ L_{1}\left(a+b X+c X^{2}\right)$.
(2) Let $L_{2}: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}_{2}[X]$ be the linear map defined by $L_{2}\left(a+b X+c X^{2}\right)=c+a X+b X^{2}$.
(a) Compute $L_{2} \circ L_{2}\left(a+b X+c X^{2}\right)$.
(b) Compute $L_{2} \circ L_{2} \circ L_{2}\left(a+b X+c X^{2}\right)$.
(c) Compute $\underbrace{L_{2} \circ L_{2} \circ \cdots \circ L_{2}}_{n \text { times }}\left(a+b X+c X^{2}\right)$ for any n.

Exercise 8: Consider the following inner product on $\mathbb{R}_{2}[X]$:

$$
<P, Q>:=\int_{-1}^{1} P(t) Q(t) d t
$$

(1) Find a basis of $\{1\}^{\perp}:=\left\{P \in \mathbb{R}_{2}[X],<P, 1>=0\right\}$.
(2) What is the dimension of $\{1\}^{\perp}$?

