University of Wisconsin-Madison Math 340 - Fall 2010 Linear Algebra

Final Exam

Exercise 1:

- (1) Let L₁ : ℝ³ → ℝ³ be a linear map satisfying dimKerL₁ = 3. Find L₁.
 (2) Let L₂ : ℝ₃[X] → ℝ₂[X] be a linear map satisfying dimKerL₂ = 1. Find its image ImL₂.
- (3) Is there any linear map $L_3 : \mathbb{R}^3 \to \mathbb{R}_3[X]$ such that $\operatorname{Im} L_3 = \mathbb{R}_3[X]$?

Exercise 2: Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ such that L((-1, 1)) = (1, -3) and L((-1, 3)) = (0, 1). Find L((1, 1)). Exercise 3: Prove or disprove that the following maps are linear.

- $\begin{array}{ll} (1) \ \ L_1: \mathbb{R}_4[X] \to \mathbb{R} \text{ with } L_1(P) = 0. \\ (2) \ \ L_2: \mathbb{R}^3 \to \mathbb{R}^3, \text{ satisfying } L((2,-1,1)) = (1,0,1) \text{ and } L((-2,1,-1)) = (0,1,4). \\ (3) \ \ L_3: \mathbb{R}^3 \to \mathbb{R}^3, \text{ with } L_3((x,y,z)) = (x,xy,y+2z). \end{array}$

Exercise 4: Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by

$$L\left(\left(\begin{array}{c}x\\y\\z\end{array}\right)\right) = \left(\begin{array}{c}y\\0\\x+y\end{array}\right)$$

Let C be the canonical basis and consider $\mathcal{B} = \{v_1, v_2, v_3\}$ of \mathbb{R}^3 with,

$$v_1 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, v_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}.$$

- (1) Check that \mathcal{B} is a basis of \mathbb{R}^3 .
- (2) Find the matrix of L relative to the canonical basis \mathcal{C} , $[L]_{\mathcal{C}}^{\mathcal{C}}$.
- (3) Find the transition matrix, $[I]^{\mathcal{C}}_{\mathcal{B}}$, for changing from \mathcal{B} to \mathcal{C} .
- (4) Find the transition matrix, $[I]_{\mathcal{C}}^{\mathcal{B}}$, for changing from \mathcal{C} to \mathcal{B} .
- (5) Find the matrix of L relative to the basis \mathcal{B} , $[L]_{\mathcal{B}}^{\mathcal{B}}$.

Exercise 5: Let $M_{2\times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \right\}$ the space of 2×2 matrices. Let L: $M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the transformation defined by $L(A) = A^t$.

- (1) Show that L is linear.
- (2) Show that $\mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis of $M_{2 \times 2}(\mathbb{R})$.
- (3) Find the matrix $[L]^{\mathcal{C}}_{\mathcal{C}}$ of L relative to \mathcal{C} .

Exercise 6: Consider the space
$$W = span \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \end{pmatrix} \right\}.$$

(1) Show that $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \end{pmatrix}$ is an orthonormal basis of W .

(2) Compute $\operatorname{proj}_{W} \left(\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right).$

Exercise 7:

- (1) Let $L_1 : \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ be the linear map defined by L(P) = P'. (a) Compute $L_1 \circ L_1(a + bX + cX^2)$.
 - (b) Compute $L_1 \circ L_1 \circ L_1(a + bX + cX^2)$.
- (2) Let $L_2: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ be the linear map defined by $L_2(a + bX + cX^2) = c + aX + bX^2$. (a) Compute $L_2 \circ L_2(a + bX + cX^2)$.

 - (b) Compute $L_2 \circ L_2 \circ L_2 (a + bX + cX^2)$. (c) Compute $L_2 \circ L_2 \circ \cdots \circ L_2 (a + bX + cX^2)$ for any n.

n times

Exercise 8: Consider the following inner product on $\mathbb{R}_2[X]$:

$$< P, Q > := \int_{-1}^{1} P(t)Q(t)dt.$$

- (1) Find a basis of $\{1\}^{\perp} := \{P \in \mathbb{R}_2[X], < P, 1 \ge 0\}.$
- (2) What is the dimension of $\{1\}^{\perp}$?